Genetic polymorphisms of the dopamine and serotonin systems modulate the neurophysiological response to feedback and risk taking in healthy humans

نویسندگان

  • I. Heitland
  • R. S. Oosting
  • J. M. P. Baas
  • S. A. A. Massar
  • J. L. Kenemans
  • K. B. E. Böcker
چکیده

Genetic differences in the dopamine and serotonin systems have been suggested as potential factors underlying interindividual variability in risk taking and in brain activation during the processing of feedback. Here, we studied the effects of dopaminergic (dopamine transporter [DAT1], catecholamine-O-methyltransferase val158met [COMT]) and serotonergic (serotonin transporter [5HTTLPR]) polymorphisms on risk taking and brain responses following feedback in 60 healthy female subjects. The subjects completed a well-established experimental gambling paradigm while an electroencephalogram was recorded. During the task, risk-taking behavior and prefrontal brain responses (feedback-related negativity [FRN]) following monetary gains and losses were assessed. FRN amplitudes were enhanced for nine-repeat-allele carriers of the DAT1 and short-allele carriers of 5HTTLPR, which are both presumably linked to less transporter activity and higher neurotransmitter levels. Moreover, nine-repeat DAT1 carriers displayed a trend toward increased risk taking in general, whereas 5HTTLPR short-allele carriers showed decreased risk taking following gains. COMT val158met genotype was unrelated to FRN amplitude and average risk taking. However, COMT met/met carriers showed a pronounced feedback P3 amplitude independent of valence, and a gradual increase in risk taking during the gambling task. In sum, the present findings underline the importance of genetic variability in the dopamine and serotonin systems regarding the neurophysiology of feedback processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of VNTR polymorphisms of dopamine transporter gene and the risk of bipolar disorder in Zahedan, southeast Iran

The exact role of dopamine transporter gene (DAT1) in the pathogenesis of bipolar disorder type 1 (BD) is not understood. In the present study, we aimed to evaluate the possible association between 30, 40 and 63 bp variable number tandem repeat (VNTR) polymorphisms of DAT1 gene and the risk of type 1 (BD) in a sample of Iranian population. This case-control study was performed on 152 BD patient...

متن کامل

EFFECTS OF CATECHOLAMINES ON DOPAMINE AND SEROTONIN SYNTHESIS IN RAT BRAIN STRIATAL SYNAPTOSOMES: THE ROLE OF PRESYNAPTIC RECEPTORS AND THE SYNAPTOSOMAL REUPTAKE MECHANISM.

The regulation of dopamine and serotonin synthesis in rat brain striatal synaptosomes has been studied using HPLC methods. Noradrenaline was shown to markedly inhibit both the synthesis of dopamine and serotonin. The response of the synaptosomes to the concentrations of noradrenaline appeared to be biphasic, a very effective inhibition occurring at low concentrations (1-5 µm) and a relativ...

متن کامل

Genetic polymorphisms of glutathione-s-transferase M1 and T1 genes with risk of diabetic retinopathy in Iranian population

Objective(s):To the best of our knowledge, this is the first report on the contributions of GST genetic variants to the risk of diabetic retinopathy in an Iranian population. Therefore, the objective of this study was to determine whether sequence variation in glutathione S-transferase gene (GSTM1 and GSTT1) is associated with development of diabetic retinopathy in type 2 diabetes mellitus (T2D...

متن کامل

The relationship between NQO1 C609T and CAT C-262T genetic polymorphisms and the risk of age-related cataracts

Cataract is multi-factorial eye disease identified by the disturbance of the transparent ocular lens. There is significant evidence suggesting oxidative damage as a major cause of initiation and progression of numerous diseases including cataracts. NAD(P)H:quinone oxidoreductase 1 (NQO1; OMIM: 125860) and catalase (CAT, OMIM: 115500) are antioxidant enzymes that prevent cells from oxidative str...

متن کامل

Genetic polymorphisms in the promoter region of catalase gene, creates new potential PAX-6 and STAT4 response elements

Catalase (CAT, OMIM: 115500) is an endogenous antioxidant enzyme and genetic variations in the regulatory regions of the CAT gene may alter the CAT enzyme activity and subsequently may alter the risk of oxidative stress related disease. In this study, potential influence(s) of the A-21T (rs7943316) and C-262T (rs1001179) genetic polymorphisms in the CAT promoter region, using the ALGGEN-PROMO.v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2012